
Infinite set of exponents describing physics on fractal networks

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1986 J. Phys. A: Math. Gen. 19 L791

(http://iopscience.iop.org/0305-4470/19/13/007)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 10:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/19/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 19 (1986) L791-L796. Printed in Great Britain 

LETTER TO THE EDITOR 

Infinite set of exponents describing physics on fractal networks 
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Received 3 June 1986 

Abstract. The generalised resistance between connected points a distance 4 apart on fractal 
networks of non-linear ( V -  I") resistors scales as Lc'"'. We show that l ( n )  for," = -a, 
-1, 0-, O+,  1 and 03, describes physically relevant geometrical properties and dC/du S 0. 
For percolating clusters we give approximants for 5 for -03 < a < 03 in 2-6 dimensions. 
For a < 0 a family of solutions to Kirchhoffs equations exists, reminiscent of metastable 
states in spin glasses. 

Random resistor fractal networks have been the subject of much fruitful research 
recently. Different properties of such systems are found to probe different critical 
exponents, or fractal dimensionalities. Choosing two terminals a Euclidean distance 
L apart, and putting a voltage- V between them, generates a current I = V / R ,  and the 
resistance scales as R ( L )  - L'R (the resistance of each bond is r = 1). Current flows 
only via backbone bonds, whose number MB scales with the fractal dimensionality of 
the backbone D,: MB- L D ~ .  The characterisation of the network also invplves the 
Lsc, singly connected bonds, which carry the full current I,  with Lsc- Lrsc (these 
determine the low temperature spin correlation functions (Coniglio 198 1,1982, Aharony 
et a1 1984) and give bounds for the elastic response of networks (Kantor-and Webman 
1984)), the length of the minimal path between the terminals Lmin- L g m i n  (related to 
the rate of propagation of a flow front through the cluster (Stanley 1986)) and other 
physically relevant subgroups described below. 

The study of percolating resistor networks recently led to the identification of 
several infinite sets of exponents, relevant to their physical properties. Rammal et a1 
(1985) considered resistance fluctuations arising from microscopic noise in each resistor 
ri in the network. The kth cumulant of R ( L )  then scales as ( R k ) ,  - Lx(k).  If the current 
in the ith bond is Ii = Iii ,  then (Rammal et a1 1985) 

I 

so that ( R k ) ,  is related to the 2kth moment of the current distribution studied by de 
Arcangelis et al (1985b). The exponents x ( k )  are very similar to the infinite set of 
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exponents introduced earlier by Mandelbrot (1974) (see also Hentschel and Proccacia 
1983) to describe the fractal measures of probability distributions on fractals and used 
to characterise intermittent turbulence (Mandelbrot 1978) and growth of diffusion- 
limited aggregates (Halsey et al 1986). 

A different infinite set of exponents arises from a network of elements each of 
which obeys a non-linear generalisation of Ohm's law (Kenkel and Straley 1982): 
V, = riIIilasgn I i .  Blumenfeld and-Aharony (1985) showed that the resistance R,(L) = 
I_ V(/lZla now scales as R,(L) - L5(a) ,  and identified f ( 0 0 )  = fsc ,  [(l) = f R  and [(O') = 
Lmi,. The fact that the single unifying function [( a) interpolates between _several 
relevant exponents generates interest in the general functional properties of l( a), in 
possible relations between [(a) and other sets (e.g. x ( k ) ) ,  and in possible additional 
useful values of a. The present letter addresses these questions. 

Our new results are summarised as follows. 
(a) We generalise the study of non-linear resistor networks to a < 0, where new 

phenomena appear. In this regime there exists in general a family of solutions to 
Kirchhoff's (generalised) equations, corresponding to different directions of the cur- 
rents through some bonds. (An example of a network with three solutions is shown 
in figure 1.) Each of these solutions corresponds to a local extremum in the power, 
P, as a function of the node voltages, where 

These extrema are reminiscent of the metastable states in an Ising spin glass. Unless 
otherwise stated, we calculate [ using the solution with the largest P. 

(b) All these solutions give the same value of f at a = -1, [(-1) = DB. 
(c) Unless the network is fully symmetric (de Arcangelis et a1 1985a) (e.g. L, = L3 

in figure 2), [(a) has a discontinuity at a = O .  The length, Lmax,-of the longest 
self-avoiding walk (SAW) between the two terminals scales as L,,, - L'm- ,  with [,,, = 
a o - ) .  

c 

l b l  

c 

( c l  

Figure 1. A cluster with source at 0 and sink at G for which three different solutions, ((I), 
( b ) ,  ( c ) ,  to Kirchhoffs equations exist. Arrows indicate directions of current and broken 
lines a cutting surface. In ( c )  two possible choices of cutting surfaces are shown. 

(d) The relation [(a) = x [ ( a  + 1)/2] found by de Arcangelis et a1 (1985a) for the 
jiifly symmetric case, breaks down in the more general case, as the &-expansion results 
for x ( k )  (Park et a1 1986) and f ( a )  (Hams 1986) indicate. However, it always holds 
at a =CO, 1 and -1. 

(e) For a + -00, [(a) - zIaI + O( 1). The parameter z describes the scaling of the 
maximal 'cutting surface' of the backbone between the terminals, i.e. the largest number 
of bonds, N,,,,  which one can cut in order to break the backbone into two pieces, 
each connected to one terminal: N,,,,,- L'. 
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L 
Figure 2. Two stages of iteration of the hierarchical model for the backbone of the 
percolation cluster. 

(f) The function [ ( a )  is monotonically decreasing, p = d [ (a ) /de  S 0. Equality 
holds at a = co. Unless the network is symmetric on all length scales, f ’  als? vankhes 
for a + O+ and a + 0-. This immediately proves the inequalities DB 3 s‘,,, 3 lmi, 3 lR 3 
tSc, without appealing to any specific geometrical model. 

(g) The average length of ,a SAW on the cluster scales as LsAW- L””SAW (Kremer 
1981). Since fmax3 1/vsAWa lmin, our results put strong bounds on vSAW. 

(h) To generalise to the non-linear case replace the exponent 2 k  in (1) by ( a  + 1 ) s  
and x ( k )  by $(a ,  k ) ,  so that $( l ,  k ) =  x ( k )  and $(a, l ) =  [(a). For either (i) k = 1 
and all a t ,  or (ii) all k in the limit a + -1 we prove that 

( d $ / d a ) / k  = (d$ /dk ) / (a  + 1). (3) 

(i)  In view of all the above information, we constructed the following approximant 
function for percolation clusters in spatial dimension d at pc:  

[ ( a )  = [ ( a > ,  = 1 + ln[ l+ a (  1 + b - ” u ) - c a ~  (4) 

where b > 1, a and c are parameters and v is the exponent of the percolation correlation 
length, 6 -  Ip -pCI-’. This function satisfies Coniglio’s (1981) theorem, that { (CO)  = 
t S c v  = 1. Since the values of [(-1) = DBv, l(0’) = fminv and l (1)  = f R v  are known 
with relatively high accuracy, we used them to determine a, b and c. For d = 2 and 3 
this approximant is compared with series evaluations (MBAH) of [ ( a )  in figure 3, and 
the agreement is excellent. This approximant leads to the following estimates for the 
quantities (- vp ( a  = l ) ,  [(O-) = [,,,v, zv): for d = 2:  (0.22 * 0.01, 1.77 * 0.03,0.89 * 
0.01); for d =3: (0.09*0.03,1.4*0.1, 0.88*0.07); for d =4: (0.05k0.02, 1.16h0.03, 
0.98k0.02); for d = 5 :  (0.02k0.02, 1.1kO.5, l.Ok0.3); for d =6-.5: (0.024 1 +  
0.095&,0.8). For d > 6 ,  l ( a )  = 1 for all a. The values for v p  (a = 1) agree within the 
error bars with those we directly extracted from our series values, and with Harris’s 
(1986) v p  ( a  = 1) = - ~ / 7 2 .  Our estimate for [(O-) for d = 2  agrees within the error 
bars with j m m a x v  = 1.84, found by Hong and Stanley (1983). Interestingly, existing 
estimates (Kremer 1981) for l /v sAW are very close to our l,,,. 

t The case k = 1 (all a) was also shown by Harris (1986). For this case Meir e? a1 (1986, hereafter referred 
to as MBAH)  have also confirmed (3)  using low concentration series. 
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We illustrate our results on the hierarchical fractal model shown in figure 2 .  For 
L1 = L2 = L4 = 1 and L3 = 3 ,  this model reduces to that of Mandelbrot and Given (19841, 
designed to describe two-dimensional percolation. De Arcangelis et a1 (1985a) con- 
sidered the symmetric case with L, = L,.  Following Blumenfeld and Aharony (1989, 
one can show that 

R = Lsc + L2[ 1 + ( L3/ L2)-1'n]-o ( 5 )  

with Lsc = L, + L4.  For the asymmetric case, L3 > L 2 ,  we find R = Lsc + L2 = Lmin if 
a + O+ and R = Lsc + L, = L,,, if a + 0-, and d R / d a  = 0 in both limits. The two limits 
become identical, with d R / d a  < 0, only in the symmetric case, L2 = L 3 .  For a = -1 
we find R = Lsc + L2 + L, = MB . For a + -CO, LY1" + 1, hence R = 2I.l. The number 
2 is indeed the largest number of bonds one must cut at each stage of iteration in order 
to break the structure into two pieces. Thus z= ln2 / ln  L for this fractal, where 
L = L , + L , + L 4 .  

For the same model, 

(Rk),  = ( rk) , [Lsc+ L,LF)/(L2+ L3)2k1 ( 6 )  

and the square bracket differs from ( 5 )  unless L2 = L, ,  or k = ( a  + 1)/2 = 0 , l  or CO. 

The difference ( [ ( a )  - x [ ( a  + 1)/2]) is maximal at a = 0 and for a + -CO. 

The situation for a < 0 is illustrated in figure 1. I f  current enters at the 'source' 0 
(whose voltage is fixed to be V)  and exits at the 'sink' G (whose voltage is fixed to 
be zero), then the ways to assign directions for currents through the bonds are restricted: 
the source (sink) has only outgoing (incoming) arrows; all other sites have at least 
one incoming and one outgoing arrow and there are no directed loops of arrows. Each 
assignment of arrows corresponds in the phase space of node voltages to a subregion 
defined by voltage inequalities, i.e. by current directions. On the boundary of such a 
subregion the voltage drop, AV, across some bond is zero. Since for a < 0 the gradient 
with respect to node voltages of the quantity ( a  + l)P is of order IA VI" ++CO at the 
boundary, one sees that within each subregion, i.e. for each arrow assignment, ( a  + l)P 
attains a local minimum value corresponding to a solution to Kirchhoff's equations. 
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Consider now the limit a + 0. Starting at site 0 in figure 1, the incoming current 

a + O+ and IOG/ ZOA+ 0 for a + 0-. Thus the whole current goes through OG, or the 
minimal path, for a + 0'. In contrast, the current via OG is negligible for a + 0-, and 
the whole current I reaches site A. Repeating this procedure at A we find that the 
full current goes through either AH or AB. Unless there are bonds with equal voltage 
drops, the full current goes through a SAW from 0 to G. On a walk with n bonds, 
AV, = V / n .  Since the current chooses the smallest AV,,  it chooses the longest possible 
walk consistent with a given arrow assignment. Demanding that P = (2 ,  r,)lZl be a 
maximum now chooses that arrow assignment corresponding to the longest SAW (i.e. 
n = 7 in figure 1). This result may seem to apply only if all the AV,  at each vertex are 
different from each other. However, more detailed analysis shows that even when 
there are equivalent parallel paths (e.g. L2 = L, in figure 2), the net resistance remains 
equal to the length of a longest SAW from the source to the sink. 

The proof that t ( - l )  = DB follows immediately from (2): for a + -1, R is given 
as 2 ,  r , ,  which is the total number of current-carrying bonds. 

We now turn to the limit a + --CO. From (2) R =Z,  r,lilla+' will be dominated by 
bonds which carry the smallest current I, = Zi,,". To locate these bonds we define 
'cutting surfaces' for a cluster with a fixed source, sink and arrow assignment. Consider 
a domain wall dividing the cluster into two domains, one connected to the source, the 
other to the sink, such that all bonds cut by the domain wall carry current from the 
domain of the source to that of the sink. A cutting surface is a (possibly non-unique, 
as in figure l ( c ) )  domain wall which, for a given choice of source, sink and arrow 
assignments, cuts the maximum number N,,, of bonds. Let Il , Z 2 .  . . denote currents 
in the bonds cut by this surface for a solution to Kirchhoff's equations. For a + --CO, 

the voltage drops occur essentially only over bonds that carry the minimal current. 
Then, by considering the voltage drops around a loop involving two different I ,  one 
can argue that limm+m Z J I ,  = 1. Thus the total current is I = N,,, I ,  so that i, = l/Nmax 
and (2) yields lima+-w In R/lal =In N,,,. We numerically verified this result for 
parts ( a ) ,  ( b )  and (c) of figure 1 for which N,,, is respectively 5 ,  5 and 4. Since we 
choose the arrow assignment with maximal P, the resistance corresponds to the maximal 
N,,, as stated in conclusion (e) above. 

Splits, I = IOG + IOA, with I o G /  IOA = ( V I A  VOA)"" .  Since v> V O A ,  IOG/ I O A  00 for 

To prove our statements on df/da,  we start from (2): 

We now generalise Cohn's (1950) theorem to the non-linear case. Let &jk = 1(-1) if 
the arrow on bond k leaves (enters) site j ,  and &jk = 0 otherwise. If the voltage at site 
j is V (  j ) ,  then A v k  = Ej EjkV( j )  and X k  hkA v k  = E ,  h k & j k V (  j ) .  This sum vanishes if the 
h k  satisfy condition (a): 2 k  hk&jk =o. In our problem, ~ ~ = Z k & j k l i k l =  1(-1) if j is the 
source (sink), and Sj = o otherwise. Since E k  E j k ( a l i k l / a a )  = asj/aa = o is condition (a) 
with hk = alik( /aa,  
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This derivative is therefoie proportional to a weighted average of In liil. Since l i , (  = 
IIi/Zl s 1, In l i i l  s 0 and d l / d a  d 0. Equality holds only if terms in (9) with liil < 1 are 
negligible. This is certainly the case for a + co, when the resistance is dominated by 
singly connected bonds (Blumenfeld and Aharony 1985), for which ii = 1. This will 
also occur for a + O", provided the symmetric sections (in which current splits into 
two parallel routes) exist only over a limited range of length scales. In the example 
of figure l(a),  the routes AHCDEFG and ABCDEFG are equvalent, and therefore 
the current will split between AHC and ABC, contributing (ln2)/2 to -dR/da at 
a + 0-. If p( a) at a = 0 turns out to be non-zero, we would conclude that the average 
cluster is symmetric. Our series results (MBAH)  show that this is not the case. The 
proof of (3) uses (8) and is very similar (MBAH) .  

We chose the approximant in (4) to reflect all the above. In a sense, it generalises 
( 5 ) .  The parameters (b  - l ) ,  a and c measure the asymmetry, the fractal dimensionality 
and the relative size of the 'blobs', respectively. We note that the &-expansion result 
(Hams 1986) has the same functional behaviour (exponential decay for a + +a, 
discontinuity at a = 0) as our approximant. 

To conclude: the study of the functional dependence of f on a and the resulting 
accurate approximant open new directions in studies of infinite sets of exponents and 
our new results for a < 0 are useful in studying SAW on fractals. 
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AEC Soreq Nuclear Research Center. We acknowledge partial support of AA by the 
NSF low temperature physics program under grant no DMR 85-01856 and of ABH 
from the NSF under grant no DMR 82-19216. 

References 

Aharony A, Gefen Y and Kantor Y 1984 J. Stat. Phys. 36 795 
Blumenfeld R and Aharony A 1985 J. Phys. A: Math. Gen. 18 L443 
Cohn R M 1950 Am. Math. Soc. 1 316 
Coniglio A 1981 Phys. Rev. Lett. 46 250 
- 1982 J. Phys. A: Math. Gen. 15 3829 
de Arcangelis L, Coniglio A and Redner S 1985a J. Phys. A: Math. Gen. 18 L805 
de Arcangelis L, Redner S and Coniglio A 1985b Phys. Rev. B 31 4725 
Halsey T C, Meakin P and Proccacia I 1986 Phys. Rev. Lett. 56 854 
Hams A B 1986 Phys. Rev. B in press 
Hentschel H G E and Proccacia I 1983 Physica ED 435 
Hong D C and Stanley H E 1983 1. Phys. A: Math. Gen. 16 L525 
Kantor Y and Webman I 1984 phys. Rev. Lett. 52 1891 
Kenkel S W and Straley J P 1982 Phys. Rev. Lett. 49 767 
Kremer K 1981 2. Phys. B 45 148 
Mandelbrot B B 1974 1. Fluid Mech. 62 331 
- 1978 Ann. Israel Phys. Soc. 2 225 
Mandelbrot B B and Given J A 1984 Phys. Rev. Lett. 52 1853 
Meir Y, Blumenfeld R, Aharony A and Harris A B to be published 
Park Y, Hams A B and Lubensky T C 1986 Phys. Rev. B in press 
Rammal R, Tannous C and Tremblay A-M S 1985 Phys. Rev. A 31 2662 
Stanley H E 1986 On Growth and Form (Dortrecht: Martinus Nijhoff) p 21 


